A Novel Parallel Direct LU Decomposition Matrix Solver for Banded Matrices

1 INTRODUCTION

The need to invert matrices corresponding to large systems of simultaneous
equations is commonplace in the field of computer simulation of physical
systems. Such matrices can arise from the discretisation of multi-dimensional
continuous problems posed in the form of partial differential equations.

At present computing power imposes severe restrictions on the scale of
simulations, though it may be argued that this will always be the case as problem
size can in practice expand far beyond any arbitrary limit.

To reduce the time taken by any particular simulation three approaches seem
possible:-

1. buy a faster scalar computer.

2. buy a computer and software that can exploit any parallelism present in the
problem and modify the code so that parallelism can be achieved.

3. build a dedicated systolic array.

Of the three options the first is by far the easiest if budgetary considerations are
ignored and technology allows, however, given an identical technology a
computer that can exploit parallelism will always be significantly faster provided
suitable parallel algorithms exist for the problem in hand. Or alternatively parallel
computing may reduce the cost for a given computational power.

Recently parallel computing has become a realistic i.e. relatively inexpensive
option with the advent of the INMOS Transputer! and provision for mounting
transputer hardware within a host scalar machine eg PC, Sun, Apollo etc. Along
with the hardware suitable software in the form of language compilers is also
begining to appear in particular “3L Parallel C” 2

With regard to the systolic array approach3 The main drawback is that such arrays
are hardwired and do not offer the flexibility of a programmable processor such
as the transputer.

In this technical note a parallel algorithm based on LU decomposition for the
direct solution of a system of linear banded simultaneous equations will be
described, iterative solution methods will not be discussed apart from the
following comment.

_9.-

lterative methods can be relatively easily parallelised with very nearly linear
speedup in the time taken to perform an iteration, however, as convergence
cannot be guaranteed situations can, and therefore unfortunately do, arise in
which a very slow convergence rate couples with an arbitrarily fast iteration time
to give the overall result that the computations get nowhere very fast. In contrast
direct methods always give an answer in the same time for a given problem size
regardless of the nature of the problem and therefore an efficient parallel direct
solver is a desirable tool.

2 METHOD

LU decomposition serves to invert the matrix equation

Mx =y (1]
where:
M is the banded matrix.
X is the unknown vector.
y is the known vector.

in the following way, let M = LU where:
L is a lower triangular matrix
U is an upper triangular matrix with v, = 1.0

both L and U have the same bandwidth as the original matrix M. We can define
a vector v such that

v = Ux (2]
equations 1 and 2 imply that

Lv=y (3]

Equation 3 may easily be inverted due to the lower triangular property of L. Thus
vector v may be determined and once this is achieved then 2 may be used to
obtain x as U can easily be inverted due to its upper triangular property.

In this way the inversion of M is seen to reduce to the problem of finding its LU
factors which, once found, need to be stored for subsequent solution of 1 via the
process just described.

Existing methods of parallel LU decomposition, for banded matrices, seem to
make inefficient use of the available processors? as they dissect the matrix into
square areas and assign individual processors to each area, see figure 1. Solution

-3-

starts in the top left corner where processor A has all the information it needs to
factor its assigned area of the matrix. Processor A has then to pass its L factor to
processor B and its U factor to processor C before both B and C can
simultaneously begin work on their allotted tasks. Once A has communicated
with B and C its task is complete and it remains idle. Thus the process continues
with L factors propagating from left to right between processors and U factors
propagating down the array of processors. At any given time the active
processors lie in a diagonal line perpendicular to the main diagonal of the matrix.
This technique is called the multi- frontal technique as at any given time the
boundary between the known and unknown elements of L and U forms a stepped
wavefront along the boundary line of active processors.

An immediately obvious way of significantly improving the efficiency of the above
algorithm is to scan a line of processors down the matrix and arrange for each
processor to store the L and U elements in its path. However there remains an
inherent inefficiency that has not yet been highlighted. When computing LU
factors the processor assigned to the region of the main diagonal of the matrix
has much more work to do as it must perform vector dot products on vectors with
lengths of the order of the band width whilst the processors at the band edges
have only dot products with lengths of the order of the band width divided by the
number of processors.

This unequal load-sharing implies that the central processor constitutes a
bottleneck in the solution process as all other processors must wait for it to
complete its current task before they can proceed.

To overcome this load-sharing problem it is proposed in this technical note that
individual processors should be assigned to segments of a single diagonal
wavefront, that scans down the main diagonal of the matrix as indicated in figure
2. The segment lengths are adjusted so that the computational load is shared as
evenly as possible between the available processors. Individual L and U vectors
would enter at opposite segment edges progress along the segment as the
wavefront advances and exit at the edge opposite to their entry.

It should be noted that the proposed algorithm suffers from a reduced
compute-to-communicate ratio when compared to the muiti- frontal technique as
communication has to take place each time the wavefront moves one node down
the matrix diagonal. Whereas the multi-frontal communicates L and U vectors in

blocks corresponding to the number of rows or columns covered by each
processor.

It takes time to perform a communication between processors, time which is thus
denied to the process of actually performing the numerical calculation. However
if the number of processors is increased for a given problem, the multi-frontal
compute-to- communicate ratio will tend towards that of the proposed algorithm
so that the much improved load-sharing of the new algorithm will at some point

-4 -

manifest itself. Indeed it may be the case that the improved load-sharing more
than compensates for the extra communication overhead although this has not
been investigated as the author does not have access to a multi- frontal code.

It is possible to combine even load-sharing with a high compute-to- communicate
ratio in a modified version of the proposed algorithm. This modified algorithm will
be discussed in a later section.

3 PERFORMANCE

The algorithm described above has been implemented using the ‘3L Parallel C’
compiler running on 'INMOS T800 Transputer’ microprocessors clocked at 20
Mhz. The Transputer is especially suited to parallel processing due fo is four
on-chip fast links which enable efficient (20Mbit/sec) nearest neighbour
communication between processors and its on chip floating point co-processor
which is capable of 1.5 Mflop operation.

In order to make a fair comparison of any speedup obtained from the
parallelisation process, results must be compared to the best available sequential
algorithm. It is uncertain which sequential algorithm is best so this technical note
makes use of the sequential form of the proposed parallel algorithm. As this may
not be the best algorithm the absolute time for sequential solution of a given
problem will be quoted in addition to the relative speedup when presenting
results.

When reading the literature it should be noted that any claimed speedup that is
super-linear with processor number implies either that the chosen sequential
algorithm is not the best known or that the claimant has invented a better
sequential algorithm in the course of his work on the parallel algorithm.

3.1 Sequential Algorithm Resuits

A sequential form of the proposed algorithm has been implemented and figure 3
shows the time taken to solve trial problems, on a single transputer, as a function
of the number of variables. For variable numbers greater than 2300 the data was
extrapolated as these problem sizes require more than the available 2Mbyte
memory associated with each of our transputers. The extrapolation was
performed by putting a line of slope four thréugh the 1600 variable point.

From this data it can be determined that a performance rating of 0.45 Mflops was
achieved from a single Transputer.

The same sequential code has been run on a number of other computers in order
to assess the transputers performance and the results are dislayed in Table 1 for

(67]

both a 1600 (bandwidth = 40) and, where available memory was adequate, a 4900
(bandwidth = 70) variable problem. Where memory was not adequate a projected
solution time is given, indicated by a question mark (?), based on a second power
ratio of work to variable number.

Computer 1600 variable 4900 variable
Transputer 14.5 136.07
Apollo DN4000 + fpa1 18.5 162.5
Apollo DN10000 3.2 30.2
Sun 4 8.0 64.5
IBM 4381 8.98 69.98
Vax 11/780 43.5 408.0?
Table 1. Sequential algorithm solution times for various computers

3.2 Parallel Algorithm

The parallel algorithm requires implementation on a linear array of processors
with I/0 achieved via a connection to the central processor, figure 2. An odd or
even number of processors could be used, however the central processor would
require a slightly different form of code for both cases. In this work it was decided
to use an odd number of processors only.

Full implementation of the parallel algorithm requires a set of five sub-programs,
the main program resident on the central processor, special sub-programs for
both L and U band edge segments resident on the outer processors and two
sub-programs for interior L and U segments resident on all L and U interior
processors respectively as depicted in figure 2.

3.21 Determination of Optimum Segmentation

In this section we shall investigate the problem of determining the optimum
segmentation of the band for equal load-sharing between the available
processors.

As stated earlier, the work required to compute an L or U element is not constant
across the band. The computation consists of vector dot products where the
length of the vectors is equal to the bandwidth (W), on the main diagonal, and zero
at the band edges. Communications also follow this pattern. Thus the work can

-6 -

be represented as the area of an isosceles triangle of base 2(W+1) and height
(W+1) as in figure 4.

The segmentation problem thus reduces to that of dividing this triangle into n,
equal area, vertical slices where n is the number of processors. This results in the
following formula for the optimum segmentation:-

(2i — 1)

where S, is the i th segment (S, is the central segment)

Note that S, will in general be non-integer . values of S; were rounded down to the
nearest even integer in this work. The restriction to even integer segment widths
arises from the diagonal nature of the wavefront, a single step along the wavefront
corresponds to crossing two matrix diagonals see figure 2. If the bandwidth is odd
the outer segments only are odd.

Thus the central, first, processor covers 2S,+ 1 diagonals as it spans the main
diagonal. Whilst the i th processor in both halves of the band cover S,— S,
diagonals each.

3.2.2 Results

Figure 5 plots the speedup achieved relative to the sequential algorithm (left hand
axis) and Mflop rating (right hand axis) as a function of the number of Transputers
and the problem size. The maximum problem size was limited to approximately
6000 variables by the available memory associated with each transputer jie. 2
Mbytes. The bandwidth of all test problems was equal to the square root of the
number of variables.

Included in the figure is a projection, based on the trends exhibited by the results
for smaller numbers of variables, to 14400 variables. The projection suggests that
a speedup of 13 i.e. 6.0 Mflops, could be obtained from 24 transputers. In making
this projection an attempt was made to avoid being over optimistic.

The efficiency of the algorithm can be gauged by reference to the 100% and 50%
efficiency lines drawn in figure 5 and varies from better that 60% (when the
number of processors is small relative to the bandwidth) to 40% when the optimal
central segment reduces in width to its practical minimum value of 2.

From the above discussion of efficiency its is clear that the number of processors
that can be effectively assigned to matrix inversion is limited by the band width.

_7-

the exact number can be determined from equation 4 by setting S, =2 and
calculating n via:-

= 1 (5]

. { W—3/2 }2
W+ 1
Table 2 displays data from a problem size of 4900 variables, illustrating the effect
of varying the segmentation for different numbers of Transputers. Its is clear that
the calculated optimum is the practical optimum and that a considerable time
advantage is gained over the equivalent multi-frontal segmentation where each
processor computes over equal segment lengths, though of course the compute

to communicate ratio is worse in this case compared to a proper implementation
of the multi-frontal algorithm.

Transputers Segmentation Optimal ? Time sec
5 26, 8 no 48.19
5 24, 6 yes 43.47
5 22, 6 no 45.43
7 32,18. 6 no 41.19
7 30, 16, 4 no 35.87
7 28, 14, 2 no 37.15
7 28, 14, 4 no 37.10
7 30, 14, 4 no 35.55
7 32, 16, 4 yes 35.47
7 50, 30, 10 no. multi-frontal 51.01

Table 2. Resuits for a 4900 variable, bandwidth = 70 problem.

The time taken for sequential solution of this 4900 variable problem is projected
to be approximately 136 seconds.

These results should be compared to those displayed in table 1, such a
comparison shows that 7 transputers come close to equalling the speed of an
Apollo DN10000. For larger problems the 7 Transputer array would be the fastest
of the computers tested.

-8 -
4 A POSSIBLE IMPROVEMENT TO THE PARALLEL ALGORITHM

As mentioned earlier the proposed parallel algorithm suffers from a relatively
poor compute-to-communicate ratio, although any disadvantage may be
significantly outweighed by the advantage of an evenly distributed workload.

In this section we will discuss a possible modification of the algorithm that
maximises the compute-to-communicate ratio whilst maintaining all the
load-sharing properties of its precursor.

Figure 6 represents a banded matrix segmented for 5 processors labelled A, B,
C, D and E according to equation 4. At the start of the decomposition process,
proces=or A could compute LU elements within a box of side length equal to its
segment width (S,) without requiring any communication. However to avoid un-
necessary wait states it is proposed that it should complete half this task before
communicating L data to B and U data to C so that B and C may begin. In this way
each processor once activated can be supplied, and is ready to receive, data at
the end of each block of computation and no inefficient wait states are required.

The wavefront for this proposed method is illustrated in figure 6 where it seen
to be a band of width B equal to half the minimum (central) segment width i.e
S,/2. Starting at the U band edge, as the path of the wavefront crosses each
processor segment it turns through 90 degrees travels a distance B before turning
back through 90 degrees and exiting the segment. This pattern is repeated until
the main diagonal is reached, the path in the L band is the mirror image i.e.
mirrored in the main diagonal. The numbers in the figure indicate the time slot
during which corresponding L and U elements are being calculated.

An additional advantage of this modified algorithm is that the segmentation of the
band need no longer be restricted to even integer values thus a more even
load-sharing and hence higher efficiencies can be expected over and above that
gained from improved communications.

Coding of this improved algorithm is in progress and results will be reported in a
subsequent technical note.

5 CONCLUSIONS

A novel algorithm for parallel direct LU matrix decomposition has been described.
This algorithm exhibits good load-sharing between the available processors
unlike existing algorithms.

Significant reductions in processing time have been demonstrated using this
algorithm. In terms of speedup achieved per processor, efficiencies of between
60% and 40% were obtained, the higher figure pertaining to the case of a small

-g-

number of processors relative to the matrix bandwidth and the lower value
corresponding to the other extreme. A rating of 1.5 Mflops has been achieved
using 7 transputers on a 4900 variable 70 bandwidth problem, 6.0 Mflops are
predicted from 24 transputers operating on a 14400 variable 120 bandwidth
problem.

An additional improvement to the algorithm has been described and will be
reported in a subsequent technical note.

6 REFERENCES

1 INMOS Limited, 1000 Aztec West, Bristol BS12 4SQ, England

2 3L Ltd, Peel House, Ladywell, Livingston EH54 6AG, Scotland

3. R.K.W Hasselwimmer, PRL Tech. Note No. 2716 (1988).

4 J.M. Jansen, F.J. van der Linden, F.W. Sijstermans. ESPRIT project 415 doc
Nr 48, March 1986

KRW/PARLU1

NESBESSEELNG
]] |]
Yo INw | [P] Tv0 Multi-frontal
c[HE[PHKR[TN /wavefront
W VU NSO TR
U U U \
FIASTT IS ds ol ISR 10
] |
w'H- ,w,w‘iu
e N ESNEERSS Vv
| |
w | [vu
(T W
X
Bandwidth = 9

Figure 1 Multi - frontal algorithm.

Segment width for
processor D

N

New
wavefront

Figure 2 New aLgcri’chm.

861 qD1JD) JO Jequnp
01 o1

\\)

3 ot
(S81gD1JDA JO Jequnu) 7}00J eJonbs - yjpampupg
S$81QDNJDA JO JOQWNN SA 8w1] UO011NN0G
wyy1Jobqy qp1uenbeg ‘¢ eunb g

ewq] uo1ynqog

TNTYd wody ZO:ER:¥T 10 £1/%0/68 YO LHOIH

- 2(W+1) —»

Figure 4 Representation of workload.

sdoq)

0°0

0"t

0z

0°e

o'¥

0°8

puD dnpeedg

0°¥%C

OLOJZQOCULH JO Jequnp

0z 002 081 0°91

0°¥1

ozt

o°ot

0’8 0°9

L i | 1 L

£ $919D1IDA OOpH] XX

§81QD1JDA Q9] - -~ -~
8819qD1JIDA (0GE e
$81QD1JDA (JOgg ~——
S01qRII0A QOBE

sueyndsupu] jo Jequny sA Burqoa donyy

:wyyJobqy 1e1qpddpd ‘G eunbn g

-—
-
p—

-

.
-

oooo
=

-4 0°%

- 0°0t

4 o°2t

< 0°¥%1

Joqop03 dnpeedg

INTNUd wody ZZ1S0:ST 0 61/%0/68 YO LHOIHM

ion to new atgorithm.

ificat

Fi gure @ Med

