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Validating a Basic Model of Spectral Line 
Profiles Using Solar Reflection Spectra 
from Jupiter’s Moon Europa 

K.R. Whight 25/12/2022 

Abstract 
The solar spectrum reflected from Jupiter’s moon Europa has been analysed using a basic model of 

absorption line profiles developed by the author. The model assumes that the photosphere can be 

represented as a single layer in thermal equilibrium and the software implementation can simulate the 

effects of temperature, pressure and rotation on the hydrogen Balmer absorption line profiles. The 

model can also be used to predict the relative strengths of the absorption lines in the series yielding, in 

the process, the column density of atoms in the Balmer ground state.  

In addition it is possible to calculate the thickness and pressure of the photosphere as a function of an 

atomic impact parameter  . The known value of the Sun’s surface gravity can then be used to put an 

upper limit on, and a probable value for, the photosphere pressure. 

When compared to measured solar spectra the relative amplitudes of the    and    lines were 

satisfactorily reproduced. Further, setting the impact parameter           m, the solar photosphere 

average pressure and thickness were calculated to be 0.135 Bar and 400.4 km respectively in good 

agreement with published data. Whilst the pressure at the base of the solar photosphere calculated 

from surface gravity was determined to be 0.3015 Bar. 

Introduction 
Perhaps the first question to be answered is “when studying the solar spectrum, why use reflection 

spectra from Europa”? The simple answer is that, as an accurate zero intensity level is necessary, a star 

like target was needed so that measured spectra could have the sky background subtracted. The 

assumption here is that as Europa is an icy body with no significant atmosphere the solar spectrum is 

unchanged upon reflection. 

Spectra were obtained using a Shelyak HiresIII spectrograph with a 2400 lines per mm grating and 

processed using Rspec software. The authors own software interfaces with Rspec and writes the 

numerical results of the various computations into labels that can be displayed on Rspec plots. 

Perhaps the next question is “why develop a basic model of spectral line profiles”?  The author has a 

background in Physics and computer modelling, specifically in the field of semiconductor devices, and 

was interested in what information could be extracted from spectra without having to first undertake 
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the equivalent of a PhD in astrophysics. There did not seem to be anything published at an introductory 

level on analysing spectra so such a model would need to be developed. In reality this task proved much 

more difficult than was anticipated but this paper aims to present and validate the authors completed 

model.  

The basis of the model is the simple assumption that a photosphere can be represented as a single layer 

in thermal equilibrium. The Sun was chosen as an appropriate validation target because, being our home 

star, it is close enough that its properties are well studied and therefore known in some detail. 

Appendix A gives a detailed account of the spectral analysis model whilst Appendix B details the spectral 

line synthesis model used for computing spectra from photospheres with given properties. Note that the 

effect of stellar rotation has not been presented as rotation is not a significant consideration for the Sun. 

Finally Appendix C presents the theory for calculating photosphere pressure from a star’s surface 

gravity. 

Spectral Analysis  
Figure 1 displays the raw Ha spectrum 

obtained by reflection from Jupiter’s moon 

Europa, the data is not calibrated in terms 

of wavelength so the x-axis is measured in 

pixels.  

Figure 2 similarly displays the sky 

background obtained by moving the Rspec 

measure lines just off of the spectral stripe 

whilst maintaining their separation.  

The background signal is then subtracted 

from the measured spectrum and the 

result calibrated for wavelength see Figure 

3. The data displayed in Figure 3 is input to 

the authors analysis software which 

initially re-samples to a uniform 

wavelength bin width, “flattens” the 

continuum slope (Figure 4) and finally 

computes the “effective emission line” 

corresponding to the measured absorption 

line (see Appendix A, equation A.2.10). 

This effective emission line is the 

“reference profile” or target for the photosphere modeling process and represents the actual 

“dynamics” occurring within the photosphere i.e. the proportion of atoms emitting at a given 

wavelength as a function of wavelength. 
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When the simulation software is run, with the reference profile as input, various photosphere properties 

can be set e.g. Temperature (T), the half-width of the Lorentzian or “pressure profile” (LHW) and finally 

if necessary rotation effects can be modelled. All these effects are convolved together to produce a 

“model” profile that can be compared to the reference profile. The input parameters are adjusted to 

give a good fit between the reference and model profiles. 

 In practice the Temperature would be obtained by fitting a Planck continuum function to a low 

resolution spectrum spanning the whole visual range of wavelengths so the only free parameters are 

those that represent pressure and rotation effects. Figure 5 shows the result of this modelling process, 

where key parameters are displayed as labels. In this case we have:- 

 T: the temperature of the photosphere 

 L0: the central wavelength of the spectral line 

 LHW: the pressure Lorentzian half-width 

 A0: the amplitude of the absorption line at the central wavelength 

Reference  

Model               
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 dl: the wavelength bin width 

 Wequiv: the emission line “equivalent width”, effectively the model emission line area 

These values are important for predicting the amount of absorption at other wavelengths in the Balmer 

series (see Appendix A). 

Finally the modelled effective emission line can be converted back (equation A.2.11) by the software 

into a corresponding absorption line, see Figure 6. The agreement between the two profiles is good 

especially in the core of the line. In this conversion process additional parameters are computed and are 

displayed in Figure 6 i.e.:-  

 N2t: the column number density of atoms in the Balmer ground state 

 P: the pressure of the photosphere  

 N: the number density of neutral atoms 

 t: the thickness of the photosphere 

 Imp: an impact parameter, input by the user, that was used to split N2t into the previous 3 

parameters which are functions of the impact parameter. 

 Sigma: the Ha photon capture cross- 

This final stage of the modeling process can be repeated many times with different impact parmeters to 

obtain the data displayed in Figure 7 where we plot the solar photosphere pressure and thickness as a 

function of the impact parameter value. Note: inclusion of stimulated emission has negligible effect. 

Computation of an impact parameter from fundamental principles has not been attempted and it is 

therefore to be regarded as an adjustable parameter. 

Flattened  

Model               
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With an impact parameter value of 4.0 A i.e. approximately eight Bohr radii, the pressure and thickness 

are calculated to be 1.135 e-1 Bar and 400.41 km respectively as displayed in Figure 6. This is a good 

prediction for the average pressure and thickness of the Solar photosphere as can be seen from 

published Solar data as displayed in Figure 8. It is also a strong validation of the model as that particular 

value of the impact parameter splits the calculated 

column density of Balmer ground state atoms into two 

correct properties of the Solar photosphere. We can 

now use the author’s model of the photosphere to 

predict the equivalent emission line for any line of the 

Balmer series. Equation A.3.5  can then be used to 

determine the depth of the absorption line at the 

corresponding central wavelength. This process has 

been performed for the Hb (Hydrogen Beta) line and 

the results plotted in Figure 9. Again It can be seen that 

the result is quite good in the core of the line though 

the wings are less well reproduced than at the Ha 

wavelength, possibly because of more photons arriving 

from the deeper higher pressure regions of the solar 

photosphere or the presence of other elemental lines. 

Figure 8: Published Solar Data

 

Flattened  

Model               
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 Pressure from Surface Gravity 
The published value of the Sun’s surface gravity is          m s-2, whilst the calculated value for the 

column density of atoms in the Balmer series ground state as displayed in figure 6 is  N2t = 5.889e20.  

Using the equations of Appendix C we can calculate the pressure at the base of the Solar photosphere as 

a function of thickness. We can also re-plot the data displayed in figure 7 as pressure vs thickness with 

both properties parameterised as a function of the impact parameter  . Figure 10 displays the result of 

these calculations where we see that the ( ) parameterised pressure is a strong function of the ( ) 

parameterized thickness whilst the nonlinearity introduced by the Saha equation results in a very weak 

(at least for the Sun) dependency of pressure on photosphere thickness. 

The point where both calculations of pressure agree has a pressure of 0.3015 Bar and a thickness of 

approximately 150 km. However the two methods of calculation use different measures of pressure. 

Surface gravity yields the pressure at the base of the photosphere whilst the calculation via impact 

parameter yields an “average” value of pressure in the photosphere. Noting that the pressure at the top 

of the photosphere is zero then a simple average surface gravity derived pressure would be 0.15 Bar 

corresponding to a thickness of approximately 300 km and an impact parameter of 3.75e-10 m. 

Thus for other stars it is seen that the surface gravity calculation can be used to place an upper bound 

on the photosphere pressure and corresponding lower bound on photosphere thickness as obtained via 

the impact parameter calculation. The probable average pressure could be taken as half the surface 

gravity derived value which could then be fed into the impact parameter calculation to yield a value for 

the impact parameter itself and a value for the probable photosphere thickness.  
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Discussion 
The model presented here is not the author’s first attempt at analysing spectra. This analysis differs 

from previous attempts in that, apart from yielding reasonable predictions for multiple stars (more 

papers will follow this) the use of the photon number flux form of the Planck function as the starting 

point made the derivation of capture cross-sections much more straight forward.  

The conventional approach to spectral analysis focuses on the absorption profile equivalent widths, 

oscillator strengths etc. These are historic parameters and are in the authors view somewhat ill defined. 

In the approach presented here, the focus is on the “equivalent emission” line profile which is a direct 

representation of the dynamics of a particular star’s photosphere i.e. temperature, atomic collision rates 

and state of rotation. This seemed a more modern and natural starting point for computing line profiles. 

It was found that the Einstein B coefficients in themselves were not directly useful for computing 

relative line strengths, for whilst the B coefficients are a (temperature independent) function of 

equilibrium level populations and the Planck photon field, capture cross-sections are a different 

(temperature dependent) function of those same variables. As functions of the same variables however 

a relation between them can be derived using equation A.4.8. 
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A dimensional argument was used to move from equation A.4.10 to equation A.4.11, as a dimension of 

time had to be removed. The obvious choice was multiplication by a function of the Einstein A 

coefficients and that function had to be common to all lines in the series. 

A further encouraging feature of the model is that the internal parameters i.e. capture cross-sections 

and impact parameter, have believable values when computed or in the case of the impact parameter, 

adjusted to fit experimental data. Capture cross-sections are found to be of the order of a Bohr radius 

circle and the impact parameter is of the order of approximately 8 Bohr radii. Had these properties been 

on any other scale the model would have been much less believable. 

The Gaussian distribution used in modeling temperature effects on line profiles has a simple and direct 

relationship to the photosphere temperature via equation (B.1.6). However the same cannot be said for 

the relationship between the half-width of the pressure Lorentzian distribution and the actual pressure. 

In this case the link between pressure and half-width depends on an impact parameter   which is 

difficult (for the author) to determine theoretically however calculating pressure also from surface 

gravity may enable the link to be made in future by studying other stars or the known Solar variation of 

pressure with depth. If the latter approach is taken then the current global thermal equilibrium model 

would need to be extended into a layered local equilibrium model. The difficulty with either of these 

approaches is that the surface gravity calculations yield a maximum pressure at the base of the 

photosphere (layer) whilst line profile synthesis yields a lower “average” pressure over the photosphere 

(layer). 

Conclusions 
The aim of this work was to produce a simple model of stellar photospheres, based on a single layer in 

thermal equilibrium, that could be used to calculate the relative depths of hydrogen Balmer series 

absorption lines and yield reasonable estimates of the pressure and thickness of the Solar photosphere. 

The results presented show that the model produced does indeed yield reasonable results for the 

relative depth of absorption at Ha and Hb wavelengths for the Sun. In addition the model yields 

reasonable estimates of the average solar photosphere pressure and total thickness i.e. 1.1349 e-1 Bar 

and 400.41 km respectively when a single adjustable impact parameter takes the value 4.0 A. 

In the absence of knowledge of the appropriate value of impact parameter combining the calculated 

column density of atoms in the balmer ground state with a surface gravity calculation suggests a 

probable value of 0.15 Bar and 300 km respectively for the Solar photosphere average pressure and 

thickness. The corresponding impact parameter being 3.75e-10 m. 

The scale of the calculated capture cross-sections and the magnitude of the impact parameter necessary 

to obtain correct solar properties are consistent with expected values. 

The model can now be applied to other stars to reveal their probable photosphere pressures and 

thicknesses 
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Appendix A: Spectral Analysis Model 
In this section we will first justify and describe the linear absorption model that we shall use assuming a 

single layer photosphere in thermal equilibrium. Next we will relate the absorption line profile to the 

dynamics of the absorbing atoms in the photosphere and finally obtain a relationship between the 

amount of absorption occurring between different lines of a series. 

A.1 Thermal Equilibrium 
The principles behind this model can best be understood if we imagine isolating a section of a stellar 

photosphere in an insulating box with perfectly reflecting walls - as far as the photosphere’s Planckian 

photon field is concerned. The walls are however perfectly transparent to all photons from an external 

Planckian source of the same temperature. If the external source is viewed through the box then we 

assume only those photons that suffer no absorption emerge from the front face of the box. Any 

absorbed photons from the external source are scattered and emerge from other faces of the box. Thus 

from the side of the box we would see an emission spectrum whilst the front face would present an 

absorption spectrum. This configuration may seem somewhat contrived but such is the power of 

assuming thermal equilibrium that, as the configuration could occur and everything “adds up”, then it 

must be indistinguishable from other possible configurations. The downside is of course that in reality 

not all, and possibly few, photospheres will be well modelled by a single layer in thermal equilibrium. 

However by comparing real spectra to this simple model it should be possible to speculate on the 

reasons for any deviation.  

In Thermodynamic equilibrium the perfect gas law states that:- 

                (A.1.1) 

where P is pressure, V is volume, T is absolute temperature, n is the number of moles of the particles, R 

(= 8.31441) is the molar gas constant therefore:- 

   
 

 
               (A.1.2) 

where    is the number of moles of the particles per unit volume, defining N  as the number of particles 

per unit volume we have:- 

   
 

  
            (A.1.3) 

where    is Avogadro's number (= 6.022045e23). An alternative way of writing the same equation is:- 

               (A.1.4) 

Where k is Boltzmann's constant (=1.380662e-23).  

Another important thermal equilibrium equation is Saha’s equation which relates the number of neutral 

atoms    and ionised atoms     . Saha’s equation states:- 



10 
 

    
  

  

  
      

    

  
         (A.1.5) 

where       is the ionisation energy of, in this case, Hydrogen (13.6eV),   is the electron thermal de 

Broglie wavelength     
  

      
  and    is the electron rest mass. Note that          therefore 

A.1.5 can be solved as a quadratic in     given  . 

A.2 Linear Absorption Model 
The i to j principle quantum level transition absorption line profile (j>i) at a given temperature T, 

expressed as a photon number flux per unit wavelength, will be represented by the function         . 

The change in          when passing through a unit area slab of thickness dx at position x is given by:- 

                                      (A.2.1)  

    is a function of wavelength   by virtue of the dynamics of the stellar photosphere (pressure, rotation 

and thermal motion). This dynamics is represented by the function       which is the number of 

absorbing atoms per cubic metre per unit wavelength in the ith principle quantum state and able to 

transition to the jth state by absorbing a photon of wavelength  . The final factor     is a “capture cross-

section” and represents the probability of absorbing a photon to transition from the ith to jth state and 

is defined in the rest-frame of an atom where we always have      . 

Equation (A.2.1) can be integrated to yield:- 

           
        

        
                    (A.2.2) 

Where t is the thickness of the photosphere and we have normalised the photon number to a 

continuum of 1.0. The photon number at x = 0 is given by the Planck function in the form of a number 

flux i.e:- 

                   
   

  
  

 
  
     

   m-2 s-1     (A.2.3) 

          in fact represents the measured normalised absorption profile, in the remainder of this section 

we will not indicate the photosphere thickness explicitly and just refer to the normalised photon i to j 

absorption profile as       . 

 Note that:- 

                     (A.2.4) 

Where    is the total number of atoms m-3 in state i. Now defining a scale factor sj using:- 

                        (A.2.5) 

Where             , we can write (A.2.2) as:- 
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                                 (A.2.6) 

Next we shall modify the notation further by defining an “equivalent emission line” via:- 

                        (A.2.7) 

       is the normalised emission line profile that would be seen if we could selectively observe the j to i 

emission process within the star’s photosphere. 

So we can write:- 

                                (A.2.8) 

And as            it follows that:- 

                             (A.2.9) 

Taking natural logarithms of (A.2.8) and (A.2.9) we can deduce:- 

        
          

            
        (A.2.10) 

and therefore:- 

                
      

         (A.2.11) 

We can use (A.2.10) to generate an equivalent emission line corresponding to a particular measured 

absorption line. This emission line can then be analysed to produce a model of the photosphere 

dynamics (Temperature, Pressure and Rotation). The resulting model can then be used to generate the 

equivalent emission line for a second line in the spectral series. To complete the process (A.2.11) can be 

used to predict the expected absorption line. The following subsections will fill in the details of this 

analysis method. 

A.3 Relation between two lines of a series 
For a second line of a spectral series we can write (A.2.8) as:- 

                                (A.3.1) 

Taking natural logarithm of (A.2.8) and (A.3.1) we can deduce:- 

                  

               

                      (A.3.2) 

Where we have distinguished between the two wavelength variables as in practice we will be dealing 

with a histogram of function values with differing wavelength bin widths. 

We can deduce from (A.2.5) that for any two lines of a spectral series 
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                                (A.3.3) 

or 

                     (A.3.4) 

Where    is the equivalent width of the j emission line which is equal to the area of the normalised line 

as obtained by integrating with respect to wavelength. Substituting into ( A.3.2) we finally obtain:- 

                    

        
                (A.3.5) 

as            by definition. All factors on the right-hand side of equation (A.3.5) are now known 

except for the capture cross-sections which we will determine in the following subsection. 

Note that from (A.2.9) we have:- 

     
             

     
        (A.3.6)  

Substitution from (A.3.4) allows us to determine that:- 

     
               

     
        (A.3.7)  

So once     is determined we can also obtain a value for the number of atoms m-3 in state i multiplied by 

the photosphere thickness i.e. the column density. 

A.4 Einstein Coefficients 
Capture and emission processes between two atomic levels with principle quantum numbers i and j (j > 

i) are governed by the Einstein coefficients. Einstein coefficients can be calculated in various sets of 

variables we will use:- 

    units m-3, is the number density of hydrogen atoms with an electron in the  th energy level at 

a given point in a photosphere. 

 gi  is the electron degeneracy of the ith energy level. 

     units m-2 s-1 is the number flux of photons that can induce the i to j transition.  

        units m-2 s-1, is the Planck distribution photon number flux at temperature T and 

transition wavelength  . 

     with units s-1, is the Einstein coefficient for spontaneous photon emission from the electron 

n=j to n=i level transition (j>i). 

     units m2, is the Einstein coefficient for electron stimulated emission from the n=j to n=i level.  

      units m2, is the Einstein coefficient for photon capture resulting in an electron n=i to n=j 

transition.  

The rates of change of level populations can be expressed as:- 
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                              (A.4.1) 

 In equilibrium  
   

  
 

   

  
   therefore we can deduce:- 

 
  

  
 

      

           
         (A.4.2) 

In thermal equilibrium detailed balance requires  

                      (A,4,3) 

which together with the Boltzmann relation:- 

        
  

  
 

  

    
 

   

             (A,4,4)  

allows us to deduce in units of m2:- 

        
      

     

  
        

          (A.4.5) 

To proceed further we need an expression for    , now the Planck function can be expressed in two 

forms:- 

1. Energy density          
    

  
  

 
  
     

 J m-3 

2. Energy flux          
     

  
  

 
  
     

 Wm-2 

It seems most appropriate in our case to use form 2 as our absorption model is framed in terms of a 

flow of photons through a photosphere. Dividing the Energy flux by the photon energy 
  

 
 yields the 

photon number flux:- 

          
   

  
  

 
  
     

  m-2 s-1        (A.4.6) 

Multiplying by a Dirac delta probability function and integrating over all wavelengths yields the result:- 

               m-2 s-1       (A.4.7) 

Substituting from (A.4.5) into (A.4.1) and using (A.4.2) we obtain:- 

       
     

          

  
        

   
      

 

   
  m2     (A.4.8)  
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We can now relate the Einstein B coefficient for an i to j capture event to the corresponding A 

spontaneous emission constant:- 

     
  

  

      
 

    
   m2       (A.4.9) 

The A Einstein coefficients are readily available in the literature from detailed quantum calculations, 

Table A.4.1 lists them for transitions of the Hydrogen Balmer series. However if we simply identify the 

capture cross-sections as         , which may be appropriate for the monochromatic case i.e. lasers, 

the resulting predictions for the relative absorption line amplitudes are in error by many orders of 

magnitude. Indeed it can be seen from (A.3.5) that relative absorption line amplitudes are extremely 

sensitive to the capture cross-sections of the lines in question. In addition the relative amplitudes are 

observed experimentally to be temperature dependent which the    are most definitely not. 

Table A.4.1 Hydrogen Einstein Coefficients Aji 108 s-1 

i\j 2 3 4 5 6 

1 4.69624 0.55722784 0.1277867 0.04123 0.0164321 

2 0 0.44078884 0.0841524 0.0252949 0.0097283 

3 0 0 0.0898098 0.0219967 0.0077822 

4 0 0 0 0.0269489 0.0077062 

5 0 0 0 0 0.0102439 
 

To proceed note that we must have:- 

 
           

           
 

  

  
         (A.4.10) 

for if (A.4.10) did not hold the level populations over time would depart from their equilibrium values. 

Thus:- 

 
   

   
 

          

            
         (A.4.11) 

Note both the     and the     are functions of the level population and photon field variables and can be 

explicitly related if desired. 

From (A.4.11) we can deduce:- 

     
  

        

  

  
         (A.4.12)  

Where   , for all lines of a given spectral series, is a constant with units s-1. We will define the    in 

terms of the Einstein coefficients via:-  

    
 

  
      
 
               (A.4.13) 
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where   is the fine structure constant. So we can finally write:- 

     
 

  
  

  

        
      
 
         m2     (A.4.14) 

Equation (A.4.14) together with (A.4.4) and (A.4.6) allow all capture cross-sections to be calculated for 

any given temperature. In practice the summation in equation (A.4.14) decreases rapidly with index k 

and is therefore convergent, it is truncated at k = 20 within the software implementation. 

Whilst (A.4.12) has been fully justified (A.4.13) does need more consideration. The summation term in 

(A.4.13) represents the total emission rate and so is a reasonable factor, of the correct dimension, to 

employ as a “Lego brick” to construct the factor   . Including this factor means the capture cross-

sections are being expressed as proportions of the total emission rate with those proportions being 

determined by the appropriate level population and the Plankian photon flux.  

Regarding the inclusion of the factor  , this factor often appears in equations describing the interaction 

cross-sections between photons and electrons so is again a reasonable inclusion. Up to this point these 

observations are the only justifications for choosing to define    as written in (A.4.11). However,  it is 

demonstrated in the main body of this paper that the capture cross-sections so defined lead to 

acceptable predictions for known properties of the Sun.  

Note, if we wish to include the effect of stimulated emission then (A.4.14) would become:- 

     
 

  
  

  

        
       

           
 

   
   

 
         m2   (A.4.15) 
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Appendix B: Spectral Line Synthesis Model 

B.1 Thermal Spectral Line Broadening 
The probability of a fluctuation ΔE from the mean energy in a system in thermal equilibrium at absolute 

temperature T is:- 

           
 
  

          (B.1.1) 

As    
 

 
     this corresponds to an atomic velocity fluctuation (ΔV) probability of:- 

           
 
    

           (B.1.2) 

Which, as     
  

  
 , in turn corresponds to a Doppler shift (Δ) probability of:- 

           
 
      

     
 

        (B.1.3) 

i.e. a Gaussian distribution:- 

             
 
      

 

            (B.1.4) 

with    
  

   
   and    

 

    
 

FWHM:             
  

 
 i.e.:- 

 
 

 
    

      
 

   
          (B.1.5) 

Therefore 

                              (B.1.6) 

B.2 Pressure Spectral Line Broadening 
Spectral line widths are affected by pressure, the more frequent atomic collisions are the more a given 

spectral line will be broadened. This is a resonance process and follows a Lorentzian distribution 

(“Atomic Astrophysics and Spectroscopy “ Anil K. Pradhan and Sultana N. Nahar):- 

        
 

 
 

 

 
  

 
  

 
 

         
  

 
 
    

 

 
       (B.2.1) 

    
 

  
 ,where    is a quantum mechanical “damping” factor which can be assumed negligible 

compared to 
 

  
 which is the average collision frequency, so we have:- 
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          (B.2.2) 

Changing variable to wavelength using   
   

 
 we can deduce:- 

      
 

 
   

 

 
  

 
   

 
 

         
    

 
 
    

 

 
       (B.2.3) 

where:- 

  
  

 
 

  
 

 

   
          (B.2.4) 

And the approximately equal sign   occurs in B.2.3 as we have approximated the term     to   
  in the 

change of variable calculation. This results in a symmetric distribution function and introduces negligible 

errors if, as is the case, the width of a line is small compared with the wavelength. So we have:- 

      
 

 
 

  
 

   

          
 
   

          (B.2.5) 

The half height (wavelength half width) occurs when           
  . 

The book referenced above goes on to deduce:- 

 
 

 
         

          (B.2.6) 

where N is the number density of atoms,    is an impact parameter (units m) and    is the relative mean 

velocity between impacting particles. For a Maxwellian distribution of velocities we have:- 

      
  

  
 
   

          (B.2.7)  

 where M is the mass of the identical impacting particles. 

If we simply substitute from B.2.6 into B.2.4 to obtain an expression for    we find that we have 

introduced a dependence on the emitted wavelength into the wavelength distribution. However, when 

expressed in terms of emitted frequency, there is no dependence of the width of the distribution on the 

emitted frequency.  To restore this property to B.2.5 and to obtain the correct dimensionality, we must 

express the impact parameter as a function of wavelength specifically:- 

    
   

 
 
 

 
           (B.2.8) 

where   is a constant. Substituting into B.2.4 we obtain:- 

 
  

 
 

  

   
        

      
        (B.2.9) 
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To proceed further we can either:- 

1. Investigate the impact parameter    in a detailed theoretical analysis as discussed in the book 

referenced above. 

2. Consider   as a fitting parameter. 

Option 1 is a complex undertaking beyond the simple scope of this work. Therefore we shall adopt 

option 2 and compare predictions from our simple theory to the known properties of the sun, when 

applied to other stars, errors are to be expected that grow as the star under consideration becomes 

more dissimilar to the Sun.  

B.3 Convolution of Two Distributions 
Given a histogram starting distribution vector      with known (not necessarily uniform) bin widths (   ) 

we can apply a second spreading distribution to yield the resultant distribution vector      via the 

matrix operation:- 

                (B.4.1) 

where              
   

   
  and D is the second distribution function. 
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Appendix C: Stellar Photosphere Pressure from Surface Gravity 

 
The pressure at the base of a photosphere must support the column of matter above it, therefore we 

can write:- 

         N m-2       (C.1) 

Where    is the pressure,    is the surface gravity (m s-2) and    is the column mass density (kg m-2).  

Equations (A.3.10) and (A.4.15) enable us to calculate a value for the compound property     i.e. the 

column number density of atoms in the i =2 principle quantum state and therefore using the Boltzmann 

relation 
  

  
 

  

    
 

   

      we can write for the compound property    :- 

     
   

 
 

  

             (C.2) 

Where     is the number density of neutral atoms in the photosphere. We now need to use Saha’s 

equation (A.1.5) to determine the ionised atom number density     but as equation (A.1.5) is nonlinear 

we have to make this calculation as a function of the photosphere thickness   given that            . 

Therefore:- 

         
     

  
      

    

  
        (C.3) 

We can now write:- 

                           (C.4)   

 where M is the mass of the identical impacting atoms.  

 

 


